寡妇张开腿让黑人通爽,吃瓜黑料,欧美激情内射喷水高潮,亚洲精品午夜国产va久久成人

我要投稿 投訴建議

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀

時(shí)間:2024-10-14 12:05:15 教學(xué)設(shè)計(jì) 我要投稿

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀9篇(優(yōu))

  作為一位不辭辛勞的人民教師,通常需要用到教學(xué)設(shè)計(jì)來輔助教學(xué),教學(xué)設(shè)計(jì)要遵循教學(xué)過程的基本規(guī)律,選擇教學(xué)目標(biāo),以解決教什么的問題。寫教學(xué)設(shè)計(jì)需要注意哪些格式呢?以下是小編幫大家整理的《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀,希望能夠幫助到大家。

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀9篇(優(yōu))

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀1

  教學(xué)目標(biāo)

  1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。

  2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

  3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

  教學(xué)重、難點(diǎn)

  經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。

  教學(xué)過程

  一、問題引入。

  師:同學(xué)們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請4個(gè)同學(xué)上來,誰愿來?

  1.游戲要求:開始以后,請你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

  2.討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說得對嗎?

  游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。

  引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。

  二、探究新知

  (一)教學(xué)例1

  1.出示題目:有4枝鉛筆,3個(gè)盒子,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?

  師:請同學(xué)們實(shí)際放放看,誰來展示一下你擺放的.情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

  板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),問題:4個(gè)人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。4支筆放進(jìn)3個(gè)盒子里呢?

  引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。

  問題:

 。1)“總有”是什么意思?(一定有)

  (2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)

  教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個(gè)結(jié)論呢?

  學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

  問題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)

  總結(jié):只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。

  2.完成課下“做一做”,學(xué)習(xí)解決問題。

  問題:6只鴿子飛回5個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

 。1)學(xué)生活動(dòng)—獨(dú)立思考自主探究

 。2)交流、說理活動(dòng)。

  引導(dǎo)學(xué)生分析:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。所以,“至少有2只鴿子飛進(jìn)同一個(gè)籠里”的結(jié)論是正確的。

  總結(jié):用平均分的方法,就能說明存在“總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里”。

 。ǘ┙虒W(xué)例2

  1.出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

 。艚o學(xué)生思考的空間,師巡視了解各種情況)

  2.學(xué)生匯報(bào),教師給予表揚(yáng)后并總結(jié):

  總結(jié)1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

  總結(jié)2:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。

  問題:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?用“商+2”可以嗎?(學(xué)生討論)

  引導(dǎo)學(xué)生思考:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對呢?(學(xué)生小組里進(jìn)行研究、討論。)

  總結(jié):用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。

  師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

 。ㄈ⿲W(xué)生自學(xué)例題3并進(jìn)行自主交流,試著用手中的用具模擬演示場景。

  三、解決問題

  四、全課小結(jié)

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀2

  【教學(xué)內(nèi)容】

  《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》六年級(jí)下冊第68頁。

  【教學(xué)目標(biāo)】

  1、經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理,會(huì)用抽屜原理解決簡單的實(shí)際問題。

  2、通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

  3、通過抽屜原理的靈活應(yīng)用感受數(shù)學(xué)的魅力。

  【教學(xué)重點(diǎn)】

  經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理。

  【教學(xué)難點(diǎn)】

  理解抽屜原理,并對一些簡單實(shí)際問題加以模型化。

  【教具、學(xué)具準(zhǔn)備】

  每組都有相應(yīng)數(shù)量的盒子、鉛筆、書。

  【教學(xué)過程】

  一、課前游戲引入。

  師:同學(xué)們在我們上課之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請5個(gè)同學(xué)上來,誰愿來?(學(xué)生上來后)

  師:聽清要求,老師說開始以后,請你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對那5個(gè)人。

  師:開始。

  師:都坐下了嗎?

  生:坐下了。

  師:我沒有看到他們坐的情況,但是我敢肯定地說:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)我說得對嗎?

  生:對!

  師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。下面我們開始上課,可以嗎?

  【點(diǎn)評】教師從學(xué)生熟悉的搶椅子游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象,激發(fā)了學(xué)生的學(xué)習(xí)興趣,為后面開展教與學(xué)的活動(dòng)做了鋪墊。

  二、通過操作,探究新知

 。ㄒ唬┙虒W(xué)例1

  1、出示題目:有3枝鉛筆,2個(gè)盒子,把3枝鉛筆放進(jìn)2個(gè)盒子里,怎么放?有幾種不同的放法?

  師:請同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況(3,0) (2,1)

  【點(diǎn)評】此處設(shè)計(jì)教師注意了從最簡單的。數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動(dòng)所有的學(xué)生積極參與進(jìn)來。

  師:5個(gè)人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。3支筆放進(jìn)2個(gè)盒子里呢?

  生:不管怎么放,總有一個(gè)盒子里至少有2枝筆?

  是:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。

  師:那么,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?請同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導(dǎo))

  師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。

 。4,0,0)

 。3,1,0)

  (2,2,0)

 。2,1,1),師:還有不同的放法嗎?

  生:沒有了。

  師:你能發(fā)現(xiàn)什么?

  生:不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

  師:總有是什么意思?

  生:一定有

  師:至少有2枝什么意思?

  生:不少于兩只,可能是2枝,也可能是多于2枝?

  師:就是不能少于2枝。(通過操作讓學(xué)生充分體驗(yàn)感受)

  師:把3枝筆放進(jìn)2個(gè)盒子里,和把4枝筆飯放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結(jié)論呢?

  學(xué)生思考組內(nèi)交流匯報(bào)

  師:哪一組同學(xué)能把你們的想法匯報(bào)一下?

  組1生:我們發(fā)現(xiàn)如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。

  師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)

  師:同學(xué)們自己說說看,同位之間邊演示邊說一說好嗎?

  師:這種分法,實(shí)際就是先怎么分的?

  生眾:平均分

  師:為什么要先平均分?(組織學(xué)生討論)

  生1:要想發(fā)現(xiàn)存在著總有一個(gè)盒子里一定至少有2枝,先平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)總有一個(gè)盒子里一定至少有2枝。

  生2:這樣分,只分一次就能確定總有一個(gè)盒子至少有幾枝筆了?

  師:同意嗎?那么把5枝筆放進(jìn)4個(gè)盒子里呢?(可以結(jié)合操作,說一說)

  師:哪位同學(xué)能把你的想法匯報(bào)一下,生:(一邊演示一邊說)5枝鉛筆放在4個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

  師:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?

  生:6枝鉛筆放在5個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

  師:把7枝筆放進(jìn)6個(gè)盒子里呢?

  把8枝筆放進(jìn)7個(gè)盒子里呢?

  把9枝筆放進(jìn)8個(gè)盒子里呢?

 。

  你發(fā)現(xiàn)什么?

  生1:筆的.枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

  師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。

  【點(diǎn)評】教師關(guān)注了抽屜原理的最基本原理,物體個(gè)數(shù)必須要多于抽屜個(gè)數(shù),化繁為簡,此處確實(shí)有必要提領(lǐng)出來進(jìn)行教學(xué)。在學(xué)生自主探索的基礎(chǔ)上,教師注意引導(dǎo)學(xué)生得出一般性的結(jié)論:只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。通過教師組織開展的扎實(shí)有效的教學(xué)活動(dòng),學(xué)生學(xué)的有興趣,發(fā)展了學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

  2、解決問題。

 。1)課件出示:5只鴿子飛回4個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

 。▽W(xué)生活動(dòng)獨(dú)立思考自主探究)

 。2)交流、說理活動(dòng)。

  師:誰能說說為什么?

  生1:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。

  生2:我們也是這樣想的。

  生3:把5只鴿子平均分到4個(gè)籠子里,每個(gè)籠子1只,剩下1只,放到任何一個(gè)籠子里,就能保證至少有2只鴿子飛進(jìn)同一個(gè)籠里。

  生4:可以用54=11,余下的1只,飛到任何一個(gè)鴿籠里都能保證至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里,所以,至少有2只鴿子飛進(jìn)同一個(gè)籠里的結(jié)論是正確的。

  師:許多同學(xué)沒有再擺學(xué)具,證明這個(gè)結(jié)論是正確的,用的什么方法?

  生:用平均分的方法,就能說明存在總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里。

  師:同意嗎?(生:同意)老師把這位同學(xué)說的算式寫下來,(板書:54=11)

  師:同位之間再說一說,對這種方法的理解。

  師:現(xiàn)在誰能說說你對總有一個(gè)鴿籠里至少飛進(jìn)2只鴿子的理解

  生:我們發(fā)現(xiàn)這是必然存在的一個(gè)現(xiàn)象,不管鴿子怎樣飛回鴿籠,一定會(huì)有一個(gè)鴿籠里至少有2只鴿子。

  師:同學(xué)們都有這個(gè)發(fā)現(xiàn)嗎?

  生眾:發(fā)現(xiàn)了。

  師:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們再來看這樣一組問題。

 。ǘ┙虒W(xué)例2

  1、出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

  把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

  把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

 。艚o學(xué)生思考的空間,師巡視了解各種情況)

  2、學(xué)生匯報(bào)。

  生1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

  板書:5本2個(gè)2本余1本(總有一個(gè)抽屜里至有3本書)

  7本2個(gè)3本余1本(總有一個(gè)抽屜里至有4本書)

  9本2個(gè)4本余1本(總有一個(gè)抽屜里至有5本書)

  師:2本、3本、4本是怎么得到的?生答完成除法算式。

  52=2本1本(商加1)

  72=3本1本(商加1)

  92=4本1本(商加1)

  師:觀察板書你能發(fā)現(xiàn)什么?

  生1:總有一個(gè)抽屜里的至少有2本只要用商+ 1就可以得到。

  師:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

  生:總有一個(gè)抽屜里的至少有3本只要用53=1本2本,用商+ 2就可以了。

  生:不同意!先把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書,不是3本書。

  師:到底是商+1還是商+余數(shù)呢?誰的結(jié)論對呢?在小組里進(jìn)行研究、討論。

  交流、說理活動(dòng):

  生1:我們組通過討論并且實(shí)際分了分,結(jié)論是總有一個(gè)抽屜里至少有2本書,不是3本書。

  生2:把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,余下的2本可以在2個(gè)抽屜里再各放1本,結(jié)論是總有一個(gè)抽屜里至少有2本書。

  生3∶我們組的結(jié)論是5本書平均分放到3個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書用商加1就可以了,不是商加2。

  師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個(gè)抽屜里至少有幾個(gè)物體呢?

  生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)總有一個(gè)抽屜里至少有商加1本書了。

  師:同學(xué)們同意吧?

  師:同學(xué)們的這一發(fā)現(xiàn),稱為抽屜原理,抽屜原理又稱鴿籠原理,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱狄里克雷原理,也稱為鴿巢原理。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用。抽屜原理的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

  3、解決問題。71頁第3題。(獨(dú)立完成,交流反饋)

  小結(jié):經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個(gè)小游戲。

  【點(diǎn)評】在這一環(huán)節(jié)的教學(xué)中教師抓住了假設(shè)法最核心的思路就是用有余數(shù)除法形式表示出來,使學(xué)生學(xué)生借助直觀,很好的理解了如果把書盡量多地平均分給各個(gè)抽屜里,看每個(gè)抽屜里能分到多少本書,余下的書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里比平均分得的書的本數(shù)多1本。特別是對某個(gè)抽屜至少有書的本數(shù)是除法算式中的商加1,而不是商加余數(shù),教師適時(shí)挑出針對性問題進(jìn)行交流、討論,使學(xué)生從本質(zhì)上理解了抽屜原理。

  三、應(yīng)用原理解決問題

  師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?

  生:2張/因?yàn)?4=11

  師:先驗(yàn)證一下你們的猜測:舉牌驗(yàn)證。

  師:如有3張同花色的,符合你們的猜測嗎?

  師:如果9個(gè)人每一個(gè)人抽一張呢?

  生:至少有3張牌是同一花色,因?yàn)?4=21

  四、全課小結(jié)

  【點(diǎn)評】當(dāng)學(xué)生利用有余數(shù)除法解決了具體問題后,教師引導(dǎo)學(xué)生總結(jié)歸納這一類抽屜問題的一般規(guī)律,使學(xué)生進(jìn)一步理解掌握了抽屜原理。

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀3

  教材分析

  《抽屜原理的認(rèn)識(shí)》是人教版數(shù)學(xué)六年級(jí)下冊第五章內(nèi)容。在數(shù)學(xué)問題中有一類與“存在性”有關(guān)的問題。在這類問題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就可以了,并不需要指出是哪個(gè)物體(或哪個(gè)人),也不需要說明是通過什么方式把這個(gè)存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“抽屜原理”!俺閷显怼弊钕仁怯19世紀(jì)的德國數(shù)學(xué)家狄里克雷(Dirichlet)運(yùn)用于解決數(shù)學(xué)問題的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。、

  學(xué)情分析

  本節(jié)課我根據(jù)“教師是組織者、引導(dǎo)者和合作者”這一理念,以學(xué)生參與活動(dòng)為主線,創(chuàng)建新型的教學(xué)結(jié)構(gòu)。通過幾個(gè)直觀的例子,用假設(shè)法向?qū)W生介紹“抽屜原理”,學(xué)生難以理解,感覺抽象。在教學(xué)時(shí),我結(jié)合本班實(shí)際,用學(xué)生熟悉的吸管和杯子貫穿整個(gè)課堂,讓學(xué)生通過動(dòng)手操作,在活動(dòng)中真正去認(rèn)識(shí)、理解“抽屜原理”學(xué)生學(xué)得輕松也容易接受。

  教學(xué)目標(biāo)

  1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。

  2、通過操作發(fā)展 的類推能力,形成抽象的數(shù)學(xué)思維。

  3、通過“抽屜原理”的靈活應(yīng)用,感受數(shù)學(xué)的魅力。

  教學(xué)重點(diǎn)和難點(diǎn)

  【教學(xué)重點(diǎn)】

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  【教學(xué)難點(diǎn)】

  理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。

  教學(xué)內(nèi)容:

  六年級(jí)數(shù)學(xué)下冊70頁、71頁例1、例2。

  教學(xué)目標(biāo):

  1、理解“抽屜原理”的.一般形式。

  2、經(jīng)歷“抽屜原理”的探究過程,體會(huì)比較、推理的學(xué)習(xí)方法,會(huì)用“抽屜原理”解決簡單的的實(shí)際問題。

  4、感受數(shù)學(xué)的魅力,提高學(xué)習(xí)興趣,培養(yǎng)學(xué)生的探究精神。

  教學(xué)重點(diǎn):

  經(jīng)歷“抽屜原理”探究過程,初步了解“抽屜原理”。

  教學(xué)難點(diǎn):

  理解“抽屜原理”的一般規(guī)律。

  教學(xué)準(zhǔn)備:

  相應(yīng)數(shù)量的杯子、鉛筆、課件。

  教學(xué)過程:

  一、情景引入

  讓五位學(xué)生同時(shí)坐在四把椅子上,引出結(jié)論:不管怎么坐,總有一把椅子上至少坐了兩名學(xué)生。

  師:同學(xué)們,你們想知道這是為什么嗎?今天,我們一起研究一個(gè)新的有趣的數(shù)學(xué)問題。

  二、探究新知

  1、探究3根鉛筆放到2個(gè)杯子里的問題。

  師:現(xiàn)在用3根鉛筆放在2個(gè)杯子里,怎么放?有幾種放法?大家擺擺看,有什么發(fā)現(xiàn)?

  擺完后學(xué)生匯報(bào),教師作相應(yīng)的板書(3,0)(2,1),引導(dǎo)學(xué)生觀察理解說出:不管怎么放總有一個(gè)杯子至少有2根鉛筆。

 。1)師:依此推下去,把4根鉛筆放在3個(gè)杯子又怎么放呢?會(huì)有這種結(jié)論嗎?讓學(xué)生動(dòng)手操作,做好記錄,認(rèn)真觀察,看看有什么發(fā)現(xiàn)?

 。2)、學(xué)生匯報(bào)放結(jié)果,結(jié)合學(xué)具操作解釋。教師作相應(yīng)記錄。

  (4,0,0) (3,1,0) (2,2,0) (2,1,1)

  (學(xué)生通過操作觀察、比較不難發(fā)現(xiàn)有與上個(gè)問題同樣結(jié)論。)

 。3)學(xué)生回答后讓學(xué)生閱讀例1中對話框:不管怎么放,總有一個(gè)杯子里至少放進(jìn)2根鉛筆。

  師:“總有”是什么意思?“至少”呢?讓學(xué)生理解它們的含義。

  師:怎樣放才能總有一個(gè)杯子里鉛筆數(shù)最少?引導(dǎo)學(xué)生理解需要“平均放”。

  教師出示課件演示讓學(xué)生進(jìn)一步理解“平均放”。

  3、探究n+1根鉛筆放進(jìn)n個(gè)杯子問題

  師:那我們再往下想,6根鉛筆放在5個(gè)杯子里,你感覺會(huì)有什么結(jié)論?

  讓學(xué)生思考發(fā)現(xiàn)不管怎么放,總有一個(gè)杯子里至少有2根鉛筆。

  師:7根鉛筆放進(jìn)6個(gè)杯子,你們又有什么發(fā)現(xiàn)?

  學(xué)生回答完之后,師提出:是不是只要鉛筆數(shù)比杯子數(shù)多1,總有一個(gè)杯子里至少放進(jìn)2根鉛筆?讓學(xué)生進(jìn)行小組合作討論匯報(bào)。

  學(xué)生匯報(bào)后引導(dǎo)學(xué)生用實(shí)驗(yàn)驗(yàn)證想法。

  師:把10根小棒放在9個(gè)杯子里呢,總有一個(gè)杯子里至少有幾根小棒?(2根)

  師:把100根小棒放在99個(gè)杯子里,會(huì)有什么結(jié)論呢?(2根)

  4、總結(jié)規(guī)律

  師:剛才我們研究的都是鉛筆數(shù)比杯子數(shù)多1,而余數(shù)也正巧是1的,如果余下鉛筆數(shù)比杯子多2、多3、多4的呢,結(jié)論又會(huì)怎樣?

 。1)探究把5根鉛筆放在3個(gè)杯子里,不管怎么放,總有一個(gè)杯子里至少有幾根鉛筆?為什么?

  a、先同桌擺一擺,再說一說。

  b、你怎么分的?

  學(xué)生匯報(bào)后,教師演示:將5根筆平均分到3個(gè)杯子里里,余下的兩根怎么辦?是把余下的兩根無論放到哪個(gè)杯子里都行嗎?怎樣保證至少?

  引導(dǎo)學(xué)生知道再把兩根鉛筆平均分,分別放入兩個(gè)杯子里。

 。2)探究把15根鉛筆放在4個(gè)杯子里的結(jié)論。

  (3)、引導(dǎo)學(xué)生總結(jié)得出結(jié)論:商加1是總有一個(gè)杯子至少個(gè)數(shù)。

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀4

  教學(xué)目標(biāo):

  1.知識(shí)與能力目標(biāo):

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。通過猜測、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),建立數(shù)學(xué)模型,發(fā)現(xiàn)規(guī)律。滲透“建!彼枷。

  2.過程與方法目標(biāo):

  經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。

  3.情感、態(tài)度與價(jià)值觀目標(biāo):

  通過“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。

  教學(xué)重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  教學(xué)難點(diǎn):理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。

  教學(xué)準(zhǔn)備:教具:5個(gè)杯子,6根小棒;學(xué)具:每組5個(gè)杯子,6根小棒。

  教學(xué)過程:

  一、游戲激趣,初步體驗(yàn)。

  師:同學(xué)們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學(xué)上來各抽一張,我們來驗(yàn)證一下。如果再請五位同學(xué)來抽,我還敢這樣肯定地說,你們相信嗎?其實(shí)這里面蘊(yùn)藏著一個(gè)非常有趣的數(shù)學(xué)原理,想不想研究?

  二、操作探究,發(fā)現(xiàn)規(guī)律。

  1.研究小棒數(shù)比杯子數(shù)多1的情況。

  師:今天這節(jié)課我們就用小棒和杯子來研究。

  師:如果把3根小棒放在2個(gè)杯子里,該怎樣放?有幾種放法?

  學(xué)生分組操作,并把操作的結(jié)果記錄下來。

  請一個(gè)小組匯報(bào)操作過程,教師在黑板上記錄。

  師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個(gè)杯子里至少有幾根小棒?板書:總有一個(gè)杯子里至少有。

  師:依此推想下去,4根小棒放在3個(gè)杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?

  學(xué)生分組操作,并把操作的結(jié)果記錄下來。

  請一個(gè)小組代表匯報(bào)操作過程,教師在黑板上記錄。

  師:觀察所有的.擺法,你發(fā)現(xiàn)了什么?這里的“總有”是什么意思?“至少”又是什么意思?

  師:那如果把6根小棒放在5個(gè)杯子里,猜一猜,會(huì)有什么樣的結(jié)果?

  師:怎樣驗(yàn)證猜測的結(jié)果對不對,你又什么好方法?引導(dǎo)學(xué)生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結(jié)果:6÷5=1……1

  師:那如果用這種方法,你知道把7根小棒放在6個(gè)杯子里,把10根小棒放在9個(gè)杯子里,把100根小棒放在99個(gè)杯子里,會(huì)有什么樣的結(jié)果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?

  師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的數(shù)量多1,總有一個(gè)杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會(huì)有什么樣的結(jié)果呢?

  2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。

  師:如果把5根小棒放在3個(gè)杯子里,會(huì)有什么結(jié)果?

  引導(dǎo):先平均分,每個(gè)杯子里分得1根小棒,余下的2根小棒又該怎么分呢?

  師:把7根小棒放在3個(gè)杯子里,會(huì)有什么結(jié)果呢?為什么?

  3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。

  師:如果把9根小棒放在4個(gè)杯子里,把15根小棒放在4個(gè)杯子里,分別又會(huì)有什么結(jié)果?

  小組內(nèi)討論,再請同學(xué)說結(jié)果和理由。

  4、總結(jié)規(guī)律。

  師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?

  總結(jié):把m個(gè)物體放在n個(gè)抽屜里(m﹥n),總有一個(gè)抽屜至少有“商+1”個(gè)物體。

  5、介紹抽屜原理。

  “抽屜原理”又稱“鴿巢原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。

  三、應(yīng)用“抽屜原理”,感受數(shù)學(xué)的魅力。

  1、把5本書放進(jìn)2個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少放進(jìn)幾本書?為什么?

  先思考:這里是把什么看做物體?什么看做抽屜?再說結(jié)果和理由。

  2、8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?

  3、向東小學(xué)六年級(jí)共有370名學(xué)生,其中六(2)班有49名學(xué)生。請問下面兩人說的對嗎?為什么?

 。1)六年級(jí)里至少有兩人的生日是同一天。

 。2)六(2)班中至少有5人是同一個(gè)月出生的。

  4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?

  5、師:開課時(shí)我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會(huì)有2張牌是同一花色的?你能用所學(xué)的抽屜原理來解釋嗎?

  四、全課小結(jié)。

  說一說:今天這節(jié)課,我們又學(xué)習(xí)了什么新知識(shí)?(師生共同對本節(jié)課的內(nèi)容進(jìn)行小結(jié))

  五、布置作業(yè)。

  課本73頁練習(xí)十二第2、4題。

  六、板書設(shè)計(jì)。

  數(shù)學(xué)廣角——抽屜原理

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀5

  教學(xué)目標(biāo):

  1、知識(shí)與能力:初步了解抽屜原理,運(yùn)用抽屜原理知識(shí)解決簡單的實(shí)際問題。

  2、過程和方法:經(jīng)歷抽屜原理的探究過程,通過動(dòng)手操作、分析、推理等活動(dòng),發(fā)現(xiàn)、歸納、總結(jié)原理。

  3、情感與價(jià)值:通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力;提高同學(xué)們解決問題的能力和興趣。

  教學(xué)重點(diǎn):

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  教學(xué)難點(diǎn):

  理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。

  教學(xué)過程:

  一、創(chuàng)設(shè)情景

  導(dǎo)入新課

  師:同學(xué)們喜歡玩游戲嗎?講臺(tái)前面有6張凳子,請7位同學(xué)來搶凳子坐。我不看同學(xué)們怎樣坐,我敢肯定的說:這6張凳子中總有一張凳子至少有兩個(gè)同學(xué)同坐,大家相信嗎?(師生演示)

  師:想知道老師為什么能做出如此準(zhǔn)確的判斷嗎?這其中蘊(yùn)含一個(gè)有趣的數(shù)學(xué)原理——抽屜原理。(板書課題)這節(jié)課我們就一起來研究這個(gè)數(shù)學(xué)原理。

  師:通過今天的學(xué)習(xí),你想知道些什么?

  二、自主操作

  探究新知

  (一)活動(dòng)一課件出示:把4枝鉛筆放到3個(gè)筆筒里,可以怎么放?師:你們擺擺看,會(huì)有什么發(fā)現(xiàn)?把你們發(fā)現(xiàn)的結(jié)果用自己喜歡的方式記錄下來。

  1、學(xué)生動(dòng)手操作,師巡視,了解情況。

  2、匯報(bào)交流說理活動(dòng)

 、賻煟河惺裁窗l(fā)現(xiàn)?誰能說說看?

  師根據(jù)學(xué)生的回答用數(shù)字在黑板上記錄。

  板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1)

  師:你們是這樣記錄的嗎?

  師:還可以用圖記錄。我把用圖記錄的用課件展示出來。

  師:還可以用表格記錄。師板書在黑板上。

  ②再認(rèn)真觀察記錄,還有什么發(fā)現(xiàn)?

  板書:不管怎樣放,總有一個(gè)筆筒里至少有2枝鉛筆。

 、墼鯓訑[可以一次得出結(jié)論?(啟發(fā)學(xué)生用平均分的擺法,引出用除法計(jì)算。)

  板書:4÷3=1(枝)1(枝)

 、軒煟哼@種方法是不是很快就能確定總有一個(gè)筆筒里至少有幾枝鉛筆呢?(學(xué)生交流)

 、莅5枝鉛筆放進(jìn)4個(gè)筆筒里呢?還用擺嗎?

  板書:5÷4=1(枝)1(枝)

  ⑥課件出示:把6枝鉛筆放進(jìn)5個(gè)筆筒呢?把7枝鉛筆放進(jìn)6個(gè)筆筒呢?把10枝鉛筆放進(jìn)9個(gè)筆筒呢?把100枝鉛筆放進(jìn)99個(gè)筆筒呢?

  板書:7÷6=1(枝)1(枝)10÷9=1(枝)1(枝)100÷99=1(枝)1(枝)

 、哂^察這些算式你發(fā)現(xiàn)了什么規(guī)律?預(yù)設(shè)學(xué)生說出:至少數(shù)=商+余數(shù)

  師:是不是這個(gè)規(guī)律呢?我們來試一試吧!

  3、深化探究得出結(jié)論

  課件出示:5只鴿子飛回3個(gè)鴿籠,至少有兩只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

 、賹W(xué)生活動(dòng)

 、诮涣髡f理活動(dòng)

  預(yù)設(shè):

  生1:題目的說法是錯(cuò)誤的,用商加余數(shù),應(yīng)該至少有3只鴿子要飛進(jìn)同一個(gè)鴿籠。

  生2:不同意!不是“商加余數(shù)”是“商加1”。

 、蹘煟旱降资恰吧碳佑鄶(shù)”還是“商加1”?誰的結(jié)論對呢?在小組里進(jìn)行研究、討論。

  ④師:誰能說清楚?板書:5÷3=1(只)2(只)至少數(shù)=商+1

 。ǘ┗顒(dòng)二

  課件出示:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

  1、分組操作后匯報(bào)

  板書:5÷2=2(本)1(本)7÷2=2(本)1(本)9÷2=2(本)1(本)

  2、那么探究到現(xiàn)在,大家認(rèn)為怎樣才能確定總有一個(gè)抽屜至少有幾本書?

  生:至少數(shù)=商+1

  3、師:我同意大家的討論。我們這個(gè)發(fā)現(xiàn)就是有趣的“抽屜原理”,(點(diǎn)題)!俺閷显怼庇址Q“鴿籠原理”,最先是由19世紀(jì)德國數(shù)學(xué)家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實(shí)際問題中有著廣泛的應(yīng)用。用它可以解決許多有趣的。問題,讓我們來試試好嗎?

  三、靈活應(yīng)用

  解決問題

  1、解釋課前提出的游戲問題。

  2、課件出示:8只鴿子飛回3個(gè)鴿舍,不管怎樣分,總有一個(gè)鴿舍至少有幾只鴿子?

  3、課件出示:任意13人中,至少有兩人的出生月份相同。為什么?

  4、課件出示:任意367名學(xué)生中,一定存在兩名學(xué)生,他們在同一天過生日。為什么?

  四、暢談感受

  教學(xué)結(jié)束

  同學(xué)們,今天這節(jié)課有什么感受?(抽生談?wù)劊瑤熆偨Y(jié)。)在這堂課中,我首先設(shè)計(jì)(搶凳子游戲,講臺(tái)前面有6張凳子,請7位同學(xué)來搶凳子坐。我不看同學(xué)們怎樣坐,我敢肯定的說:這6張凳子中同學(xué)們不管怎樣坐,總有一張凳子至少有兩個(gè)同學(xué)同坐,大家相信嗎?)目的一:小孩子最喜歡玩游戲,一說玩游戲,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性;目的`二:激發(fā)學(xué)生思考什么是抽屜原理,對解決這類問題有什么作用?

  接著出示:把4枝鉛筆放到3個(gè)筆筒里,可以怎么放?我讓學(xué)生用自已喜歡的方法動(dòng)手操作、匯報(bào)、板書,得出結(jié)論,又提出:怎樣擺可以一次得出結(jié)論?小組討論,然后針對他們的方法進(jìn)行講解(邊操作邊講解),其實(shí)這方法是用平均分的擺法,引出用除法計(jì)算。)板書:4÷3=1(枝)1(枝)得出預(yù)設(shè)學(xué)生說出:至少數(shù)=商+余數(shù),讓學(xué)生有更深的認(rèn)識(shí),同時(shí)也讓他們了解平均分的擺法最好,為后面的學(xué)習(xí)打下鋪墊。

  然后,出示活動(dòng)二:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?先動(dòng)手操作,同時(shí)用算式計(jì)算,看算式的規(guī)律是:發(fā)現(xiàn)是至少數(shù)=商+1接著我反問任意367名學(xué)生中,一定存在兩名學(xué)生,他們在同一天過生日。為什么?這樣有利于學(xué)生的反向思維能力的鍛煉。

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀6

  【知識(shí)技能】

  1.理解最簡單的抽屜原理及抽屜原理的一般形式。

  2.引導(dǎo)學(xué)生采用操作的方法進(jìn)行枚舉及假設(shè)法探究。

  【過程方法】

  經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理。

  【情感態(tài)度價(jià)值觀】

  體會(huì)數(shù)學(xué)知識(shí)在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識(shí)和能力。

  【教學(xué)重、難點(diǎn)】經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。

  【教學(xué)過程】

  一、問題引入。

  師:同學(xué)們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請4個(gè)同學(xué)上來,誰愿來?

  1.游戲要求:開始以后,請你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。

  2.討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說得對嗎?

  游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的'一種現(xiàn)象。

  引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。

  二、探究新知

 。ㄒ唬┙虒W(xué)例1

  1.出示題目:有4枝鉛筆,3個(gè)盒子,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?

  師:請同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

  板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),問題:4個(gè)人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。4支筆放進(jìn)3個(gè)盒子里呢?

  引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。

  問題:

 。1)“總有”是什么意思?(一定有)

 。2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)

  教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個(gè)結(jié)論呢?

  學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

  問題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀7

  桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無論怎樣放,我們會(huì)發(fā)現(xiàn)至少會(huì)有一個(gè)抽屜里面至少放兩個(gè)蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。

  教學(xué)理念:

  激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過小組合作,動(dòng)手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建!,使復(fù)雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標(biāo)要求。

  教學(xué)目標(biāo)

  1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。

  2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

  3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

  教學(xué)重難點(diǎn)

  重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  難點(diǎn):理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。

  教學(xué)過程:

  一、課前游戲引入。

  師:同學(xué)們在我們上課之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請5個(gè)同學(xué)上來,誰愿來?(學(xué)生上來后)

  師:聽清要求 ,老師說開始以后,請你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對那5個(gè)人。

  師:開始。

  師:都坐下了嗎?

  生:坐下了。

  師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”我說得對嗎?

  生:對!

  師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。(抽屜原理)

  二、通過操作,探究新知

  (一)探究例1

  1、研究3枝鉛筆放進(jìn)2個(gè)文具盒。

 。1)要把3枝鉛筆放進(jìn)2個(gè)文具盒 ,有幾種放法?請同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。

 。2)反饋:兩種放法:(3,0)和(2,1)。

 。3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)

  (4)“總有”什么意思?(一定有)

 。5)“至少”有2枝什么意思?(不少于2枝)

  小結(jié):在研究3枝鉛筆放進(jìn)2個(gè)文具盒時(shí),同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個(gè)文具盒放進(jìn)2枝鉛筆)

  2、研究4枝鉛筆放進(jìn)3個(gè)文具盒。

 。1)要把4枝鉛筆放進(jìn)3個(gè)文具盒里,有幾種放法?請同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。

 。2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

 。3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)筆盒至少有2枝鉛筆)

 。4)你是怎么發(fā)現(xiàn)的?

 。5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)文具盒放進(jìn)2枝鉛筆”。如果要讓每個(gè)文具盒里放的筆盡可能的少,你覺得應(yīng)該要怎樣放?(每個(gè)文具盒都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個(gè)文具盒,總會(huì)有一個(gè)文具盒至少有2枝筆)(你真是一個(gè)善于思想的孩子。)

 。6)這位同學(xué)運(yùn)用了假設(shè)法來說明問題,你是假設(shè)先在每個(gè)文具盒里放1枝鉛筆,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個(gè)文具盒,那么這個(gè)文具盒就有2枝鉛筆了)

 。7)誰能用算式來表示這位同學(xué)的想法?(5÷4=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?

  (8)在探究4枝鉛筆放進(jìn)3個(gè)文具盒的問題,同學(xué)們的方法有兩種,一是枚舉了所有放法,找規(guī)律,二是采用了“假設(shè)法”來說明理由,你覺得哪種方法更明了更簡單?

  3、類推:把5枝鉛筆放進(jìn)4個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

  把6枝鉛筆放進(jìn)5個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

  把7枝鉛筆放進(jìn)6個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

  把100枝鉛筆放進(jìn)99個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?

  4、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆。)

  5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個(gè)筆盒至少有2枝鉛筆。”

  6、小結(jié):剛才我們分析了把鉛筆放進(jìn)文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時(shí),總有一個(gè)文具盒至少放進(jìn)2枝鉛筆。

  這就是今天我們要學(xué)習(xí)的抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?鉛筆相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么文具盒就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個(gè)抽屜里放進(jìn)了2個(gè)物體!

  7、在我們的生活中,常常會(huì)遇到抽屜原理,你能不能舉個(gè)例子?在課前我們玩的游戲中,有沒有抽屜原理?

  過渡:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。

  (二)探究例2

  1、研究把5本書放進(jìn)2個(gè)抽屜。

  (1)把5本書放進(jìn)2個(gè)抽屜會(huì)有幾種情況?(5,0)、(4,1)和(3,2)

 。2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(總有一個(gè)抽屜至少放進(jìn)了3本書)

 。3)還可以怎樣理解這個(gè)結(jié)論?先在每個(gè)抽屜里放進(jìn)2本,剩下的.1本放進(jìn)任何一個(gè)抽屜,這個(gè)抽屜就有3本書了。

 。4)可以把我們的想法用算式表示出來:5÷2=2…1(商2表示什么,余數(shù)1表示什么)2+1=3表示什么?

  2、類推:如果把7本書放進(jìn)2個(gè)抽屜中,至少有一個(gè)抽屜放進(jìn)4本書。

  如果把9本書放進(jìn)2個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)5本書。

  如果把11本書放進(jìn)3個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)4本書。你是怎樣想的?(11÷3=3…2)商3表示什么?余數(shù)2表示什么?3+1=4表示什么?

  3、小結(jié):從以上的學(xué)習(xí)中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時(shí),我們可以運(yùn)用假設(shè)法,把物體盡可量多地“平均分”給各個(gè)抽屜,總有一個(gè)抽屜比平均分得的物體數(shù)多1。)

  4、經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,個(gè)個(gè)都是了不起的數(shù)學(xué)家。 “抽屜原理”最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。

  5、做一做:

  7只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)佶舍里。為什么?

  8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛時(shí)同一個(gè)鴿舍里。為什么?

 。ㄏ茸寣W(xué)生獨(dú)立思考,在小組里討論,再全班反饋)

  三、遷移與拓展

  下面我們一起來放松一下,做個(gè)小游戲。

  我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?

  四、總結(jié)全課

  這節(jié)課,你有什么收獲?

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀8

  1.出示題目:有4枝鉛筆,3個(gè)盒子,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?

  師:請同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

  板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),問題:4個(gè)人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。4支筆放進(jìn)3個(gè)盒子里呢?

  引導(dǎo)學(xué)生得出:不管怎么放,總有一個(gè)盒子里至少有2枝筆。

  問題:

 。1)“總有”是什么意思?(一定有)

 。2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)

  教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個(gè)結(jié)論呢?

  學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

  問題:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個(gè)盒子里呢?把8枝筆放進(jìn)7個(gè)盒子里呢?把9枝筆放進(jìn)8個(gè)盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。)

  總結(jié):只要放的鉛筆數(shù)盒數(shù)多1,總有一個(gè)盒里至少放進(jìn)2支。

  2.完成課下“做一做”,學(xué)習(xí)解決問題。

  問題:6只鴿子飛回5個(gè)鴿籠,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里,為什么?

 。1)學(xué)生活動(dòng)—獨(dú)立思考自主探究

  (2)交流、說理活動(dòng)。

  引導(dǎo)學(xué)生分析:如果一個(gè)鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的`一個(gè)鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個(gè)鴿籠里。所以,“至少有2只鴿子飛進(jìn)同一個(gè)籠里”的結(jié)論是正確的。

  總結(jié):用平均分的方法,就能說明存在“總有一個(gè)鴿籠至少有2只鴿子飛進(jìn)一個(gè)個(gè)籠里”。

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀9

  【教學(xué)內(nèi)容】

  《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》六年級(jí)下冊。

  【教材分析】

  讓學(xué)生初步了解簡單“抽屜原理”,教材借助把4枝鉛筆放進(jìn)3個(gè)文具盒中的操作情景,介紹了較簡單的“抽屜原理”,通過用“抽屜原理”解決簡單的實(shí)際問題,初步感受數(shù)學(xué)的魅力。主要培養(yǎng)學(xué)生的思考和推理能力,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)原理”的過程,提高學(xué)生數(shù)學(xué)應(yīng)用意識(shí)。

  【學(xué)情分析】

  教材借助把4枝鉛筆放進(jìn)3個(gè)文具盒中的操作情景,介紹了較簡單的“抽屜原理”。學(xué)生在操作實(shí)物的過程中可以發(fā)現(xiàn)一個(gè)現(xiàn)象:不管怎么放,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆,從而產(chǎn)生疑問,激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉。

  【教學(xué)目標(biāo)】

  1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡單的實(shí)際問題。

  2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

  3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

  【教學(xué)重點(diǎn)】

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  【教學(xué)難點(diǎn)】

  理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。

  【教具、學(xué)具準(zhǔn)備】

  每組都有3個(gè)文具盒和4枝鉛筆。

  【教學(xué)過程】

  一、談話導(dǎo)入

  教師:同學(xué)們,你們在電腦上玩過“電腦算命”嗎?“電腦算命”看起來很深?yuàn)W,只要報(bào)出你的出生的年、月、日和性別,一按鍵,屏幕上就會(huì)出現(xiàn)所謂性格、命運(yùn)、財(cái)運(yùn)等。通過今天的學(xué)習(xí),我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非?尚突奶频,是不能信的鬼把戲。

  板書:抽屜原理

  教師:通過學(xué)習(xí),你想解決那些問題?

  根據(jù)學(xué)生回答,教師把學(xué)生提出的問題歸結(jié)為:“抽屜原理”是怎樣的?這里的“抽屜”是指什么?運(yùn)用“抽屜原理”能解決那些問題?怎樣運(yùn)用“抽屜原理”解決實(shí)際問題?

  二、通過操作,探究新知

 。ㄒ唬┱J(rèn)識(shí)“抽屜原理”

  出示題目:有3枝鉛筆,2個(gè)盒子,把3枝鉛筆放進(jìn)2個(gè)盒子里,怎么放?有幾種不同的放法?

  師:請同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況(3,0)(2,1)

  師:5個(gè)人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)。3支筆放進(jìn)2個(gè)盒子里呢?

  生:不管怎么放,總有一個(gè)盒子里至少有2枝筆?

  師:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。

  師:那么,把4枝鉛筆放進(jìn)3個(gè)盒子里,怎么放?有幾種不同的放法?請同學(xué)們實(shí)際放放看。(師巡視,了解情況,個(gè)別指導(dǎo))

  師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。

  (4,0,0)(3,1,0)(2,2,0)(2,1,1),師:還有不同的放法嗎?

  生:沒有了。

  師:你能發(fā)現(xiàn)什么?

  生:不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

  師:“總有”是什么意思?

  生:一定有

  師:“至少”有2枝什么意思?

  生:不少于兩只,可能是2枝,也可能是多于2枝?

  師:就是不能少于2枝。(通過操作讓學(xué)生充分體驗(yàn)感受)

  師:把3枝筆放進(jìn)2個(gè)盒子里,和把4枝筆飯放進(jìn)3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個(gè)結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個(gè)結(jié)論呢?

  學(xué)生思考——組內(nèi)交流——匯報(bào)

  師:哪一組同學(xué)能把你們的想法匯報(bào)一下?

  組1生:我們發(fā)現(xiàn)如果每個(gè)盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個(gè)盒子里,總有一個(gè)盒子里至少有2枝鉛筆。

  師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)

  師:同學(xué)們自己說說看,同位之間邊演示邊說一說好嗎?

  師:這種分法,實(shí)際就是先怎么分的?

  生眾:平均分

  師:為什么要先平均分?(組織學(xué)生討論)

  生1:要想發(fā)現(xiàn)存在著“總有一個(gè)盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個(gè)盒子里,一定會(huì)出現(xiàn)“總有一個(gè)盒子里一定至少有2枝”。

  生2:這樣分,只分一次就能確定總有一個(gè)盒子至少有幾枝筆了?

  師:同意嗎?那么把5枝筆放進(jìn)4個(gè)盒子里呢?(可以結(jié)合操作,說一說)

  師:哪位同學(xué)能把你的想法匯報(bào)一下,生:(一邊演示一邊說)5枝鉛筆放在4個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

  師:把6枝筆放進(jìn)5個(gè)盒子里呢?還用擺嗎?

  生:6枝鉛筆放在5個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

  師:把7枝筆放進(jìn)6個(gè)盒子里呢?

  把8枝筆放進(jìn)7個(gè)盒子里呢?

  把9枝筆放進(jìn)8個(gè)盒子里呢?……

  你發(fā)現(xiàn)什么?

  生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個(gè)盒子里至少有2枝鉛筆。

  師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。

 。ǘ┨骄啃轮

  1.出示題目:把5本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

  把7本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

  把9本書放進(jìn)2個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

 。艚o學(xué)生思考的空間,師巡視了解各種情況)

  2.學(xué)生匯報(bào)。

  生1:把5本書放進(jìn)2個(gè)抽屜里,如果每個(gè)抽屜里先放2本,還剩1本,這本書不管放到哪個(gè)抽屜里,總有一個(gè)抽屜里至少有3本書。

  板書:5本2個(gè)2本……余1本(總有一個(gè)抽屜里至有3本書)

  7本2個(gè)3本……余1本(總有一個(gè)抽屜里至有4本書)

  9本2個(gè)4本……余1本(總有一個(gè)抽屜里至有5本書)

  師:2本、3本、4本是怎么得到的?生答完成除法算式。

  5÷2=2本……1本(商加1)

  7÷2=3本……1本(商加1)

  9÷2=4本……1本(商加1)

  師:觀察板書你能發(fā)現(xiàn)什么?

  生1:“總有一個(gè)抽屜里的至少有2本”只要用“商+1”就可以得到。

  師:如果把5本書放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少有幾本書?

  生:“總有一個(gè)抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。

  生:不同意!先把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個(gè)抽屜里,總有一個(gè)抽屜里至少有2本書,不是3本書。

  師:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對呢?在小組里進(jìn)行研究、討論。

  交流、說理活動(dòng):

  生1:我們組通過討論并且實(shí)際分了分,結(jié)論是總有一個(gè)抽屜里至少有2本書,不是3本書。

  生2:把5本書平均分放到3個(gè)抽屜里,每個(gè)抽屜里先放1本,余下的2本可以在2個(gè)抽屜里再各放1本,結(jié)論是“總有一個(gè)抽屜里至少有2本書”。

  生3我們組的結(jié)論是5本書平均分放到3個(gè)抽屜里,“總有一個(gè)抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。

  師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個(gè)抽屜里至少有幾個(gè)物體呢?

  生4:如果書的本數(shù)是奇數(shù),用書的'本數(shù)除以抽屜數(shù),再用所得的商加1,就會(huì)發(fā)現(xiàn)“總有一個(gè)抽屜里至少有商加1本書”了。

  師:同學(xué)們同意吧?

  師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

  3.解決問題。71頁第3題。(獨(dú)立完成,交流反饋)

  小結(jié):經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個(gè)小游戲。

  三、應(yīng)用原理解決問題

  師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?

  生:2張/因?yàn)?÷4=1…1

  師:先驗(yàn)證一下你們的猜測:舉牌驗(yàn)證。

  師:如有3張同花色的,符合你們的猜測嗎?

  師:如果9個(gè)人每一個(gè)人抽一張呢?

  生:至少有3張牌是同一花色,因?yàn)?÷4=2…1

  四、全課小結(jié)

  上面我們所證明的數(shù)學(xué)原理就是最簡單的“抽屜原理”,可以概括為:把m個(gè)物體任意放到m—1個(gè)抽屜里,那么總有一個(gè)抽屜中放進(jìn)了至少2個(gè)物體。

  五、思維訓(xùn)練

  1、從街上隨便找來13人,就可以斷定他們中至少有兩個(gè)人屬相(指鼠、牛、虎、兔……十二種生肖)相同。說明理由。

  2、任意367名學(xué)生中,一定存在兩名學(xué)生,他們在同一天過生日。說明理由。

  【教學(xué)反思】

  1、小組活動(dòng)很容易抓住學(xué)生的注意力,讓學(xué)生覺得這節(jié)課要探究的問題即好玩又有意義。

  2、理解“抽屜原理”對于學(xué)生來說有著一定的難度。

  3、部分學(xué)生很難判斷誰是物體,誰是抽屜。

【《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀】相關(guān)文章:

《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀04-24

抽屜原理教學(xué)設(shè)計(jì)優(yōu)秀10-09

《抽屜原理》優(yōu)秀教學(xué)設(shè)計(jì)07-30

抽屜原理教學(xué)設(shè)計(jì)06-12

(優(yōu)秀)阿基米德原理教學(xué)設(shè)計(jì)01-16

阿基米德原理教學(xué)設(shè)計(jì)06-02

最新原電池工作原理教學(xué)設(shè)計(jì)04-29

(精品)阿基米德原理教學(xué)設(shè)計(jì)6篇11-17

交通規(guī)劃原理設(shè)計(jì)心得05-13

康乐县| 泗水县| 承德市| 鄯善县| 平定县| 高清| 屯门区| 商都县| 获嘉县| 鄂州市| 林州市| 深圳市| 宜阳县| 怀远县| 勃利县| 司法| 定襄县| 徐汇区| 藁城市| 东台市| 台北市| 桂东县| 乌拉特中旗| 苏尼特右旗| 丰城市| 沈丘县| 莱芜市| 临清市| 龙岩市| 汾西县| 和静县| 崇明县| 长岛县| 夏河县| 集安市| 合山市| 乐亭县| 新余市| 会理县| 乌拉特前旗| 七台河市|